

Edital 55/2019 Reitoria IFC – Ações integradas PROEN/PROPI/PROEX

PROJETO DE ENSINO, PESQUISA E EXTENSÃO

Desenvolvimento de processos e análise de propriedades de diferentes tipos de revestimentos metálicos aplicados por soldagem, visando-se ao atendimento de aplicações no arranjo produtivo local.

Equipe

Bolsistas IC: Mariane Rinaldi Dani e Kauê Gustavo Alberguini Pereira (EMIMEC)

Coordenador: Prof Aloysio A. B. Fogliatto, Dr. Eng.

Professores colaboradores: Prof Haroldo Gregório De Oliveira, Prof Mario Wolfart Jr. e

Prof Rodrigo Cardoso Costa

DIVULGAÇÃO DOS ESTUDOS PRELIMINARES

Objetivo Geral

Desenvolver parâmetros adequados, nas diferentes modalidades do processo de soldagem GMAW, visando-se à obtenção de revestimentos metálicos com diluição adequada, utilizando-se diferentes metais de adição (arames).

Objetivos Específicos

Dimensão Ensino:

- Conceitos do processo de soldagem GMAW a partir do estudo experimental de uma importante aplicação prática observada no APL (deposição de revestimentos metálicos);
- Conceitos de processos, materiais e metalurgia da soldagem, a partir do estudo dos efeitos da utilização de diferentes metais de adição (arames) na parametrização do processo e nas características dos revestimentos;
- Conceitos de materiais e metalurgia da soldagem, a partir do estudo dos efeitos de diferentes diluições nas características dos revestimentos.

Objetivos Específicos

Dimensão Pesquisa:

- Compreender a influência da polaridade positiva, polaridade negativa e polaridade variável do processo GMAW;
- Desenvolver parâmetros do processo de soldagem GMAW com polaridade positiva, polaridade negativa e polaridade variável, para diferentes tipos de metais de adição;
- Obter dados comparativos de relação custo/benefício entre diferentes estratégias de aplicação de revestimentos;
- Obter dados comparativos de relação custo/benefício entre diferentes modalidades do processo GMAW;
- Obter dados comparativos de relação custo/benefício entre diferentes metais de adição.

Objetivos Específicos

Dimensão Extensão:

- Desenvolver parâmetros do processo de soldagem GMAW com polaridade positiva, polaridade negativa e polaridade variável, para diferentes tipos de metais de adição (arames), objetivando-se fornecer soluções técnicas/práticas para as empresas que compõem o APL;
- Testar procedimentos visando-se à obtenção de revestimentos metálicos com diluições entre 10 e 20%;
- Fornecer informações técnicas acerca da melhor relação custo/benefício no que diz respeito as diferentes estratégias de aplicação de revestimentos metálicos por soldagem GMAW;
- Fornecer informações acerca da melhor relação custo/benefício no que diz respeito aos diferentes metais de adição comumente empregados na aplicação de revestimentos metálicos utilizados contra a ação dos principais mecanismos de desgaste.

Desgaste: do que se trata

- Processo de dano superficial em uma peça.
- Ocasionado por uma interação mecânica entre um corpo e outros corpos, fluídos ou gases.
- Causa uma perda progressiva de material.

Rijeza, 2020.

Mecanismos de desgastes: Abrasão

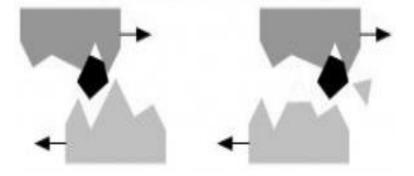
- Retirada de material através da força de partículas soltas contra uma superfície do material.
- Seu dano ao material depende do tamanho das partículas, da sua forma, dureza, tamanho da força aplicada e frequência que o contato ocorre.
- Ocorre em peças com movimentos rotativos (mancais, luvas de bombas, sedes de rolamentos).
- Apresenta um aspecto de sulcos alinhados.

Rijeza, 2020.

Tipos de Desgastes Abrasivos

Entre dois corpos

 Acontece quando as partículas rígidas entram em contato.


Desgaste abrasivo de dois corpos

Mundo Mecânico, 2017.

Entre três corpos

 Acontece quando as partículas estão ligadas entre si.

Desgaste abrasivo de três corpos

Mundo Mecânico, 2017.

Como resolver os desgastes abrasivos?

Deve- se analisar o ambiente de trabalho para conhecer os mecanismos de desgaste que atuam sobre a peça. É necessário:

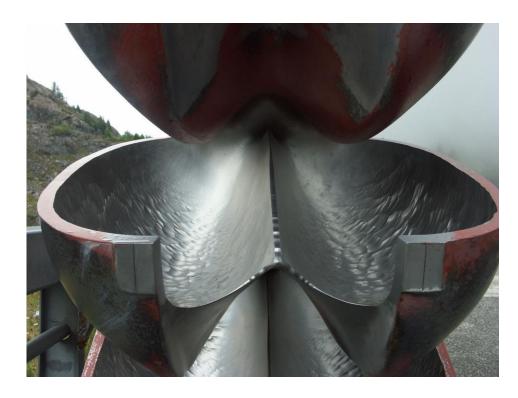
Escolher o material adequado

HD Technology, 2020.

Avaliar se a peça está devidamente lubrificada

BioLub, 2018.

Uso de tratamento térmico ou revestimento para aumentar a vida útil da peça


Mecânica Industrial, 2020.

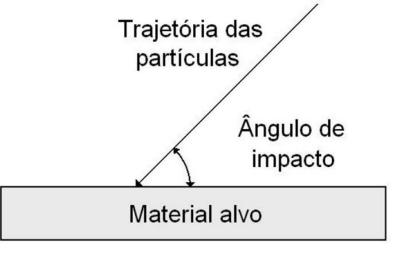
Mecanismos de desgastes: Erosão

- Remoção de material pelo impacto na superfície.
- Causado por partículas sólidas presentes em um determinado fluído.
- Encontrado em pás de ventiladores, tubulações, pás de ventiladores.

Pinterest, 2020.

Tipos de Desgaste por Erosão

Em ângulo raso (≈ 180°)


 Aspecto em forma de ondas, conforme o sentido do impacto

Evitada com o uso de materiais de elevada

dureza

Em Ângulo perpendicular (≈ 90°)

- Aumenta a rugosidade superficial
- Evitada com o uso de materiais com boa tenacidade

Rijeza, 2020.


Desgaste por erosão – como prevenir

Deve-se entender os processos que a peça será submetida para garantir um bom funcionamento

Identificar qual partícula sólida está sendo liberada

SP Lubi, 2018.

Verificar o ângulo de incidência e tipo de desgaste

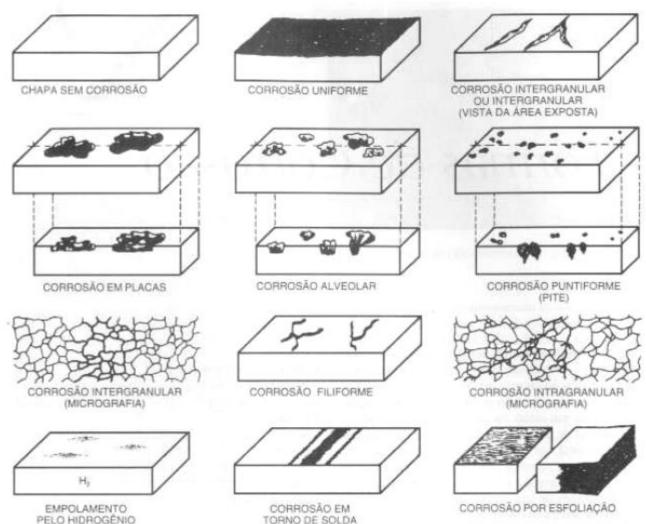
iStock, 2020

Escolha adequada do material para evitar o desgaste

Rijeza, 2020

Desgaste por Corrosão

Pode ser definido como a adulteração de características de um material durante o andamento com a atuação do ambiente, tendo como principal ascendência a intenção do material a retroceder ao seu estado de origem.



Pinterest, 2020.

Formas de Corrosão

A forma que a peça sofre o desgaste varia conforme a utilização, o material e ambiente de trabalho.

Engenheiro de Materiais, 2017.

Desgaste por Corrosão – como evitar

- Seleção correta de materiais;
- Análise do ambiente de trabalho;
- Conhecimento das variáveis que causam a corrosão (composição química, processamento, etc);
- Aplicação do revestimento com ligas metálicas.

BetaEQ, 2018.

E como atacar os mecanismos de desgaste?

Revestimentos Metálicos

Tem como objetivo o aumento da durabilidade das peças industriais nos mais variados meios de trabalho, **reduzindo ou evitando a ação dos mecanismos de desgaste** e diminuindo os custos de manutenção.

Muitas vezes, é possível selecionar um substrato metálico de menor custo (aço carbono comum) e aplicar um revestimento na superfície deste substrato, visando-se à obtenção de propriedades específicas, como:

- revestimentos anticorrosivos ou para evitar a contaminação do fluido contido;
- revestimentos antiabrasivos ou antierosivos, com elevada dureza e resistência ao desgaste;
- revestimentos antiincrustantes;
- revestimentos refratários.

Revestimentos Metálicos por Soldagem

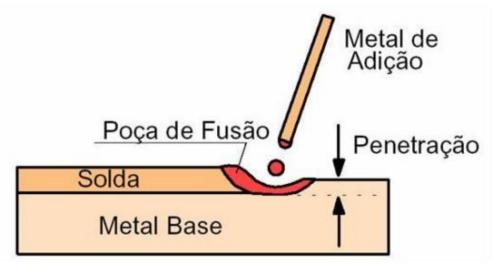
A seleção do processo de soldagem para o revestimento é tão importante quanto a seleção do metal de adição.

Existem fatores que devem ser levados em conta neste tipo de revestimento:

- Propriedades do metal de base;
- Características físicas da peça;
- Aplicação da peça;
- Qualidades e propriedades do metal de adição;
- Habilidade do soldador;
- Custo do processo.

Pinterest, 2020.

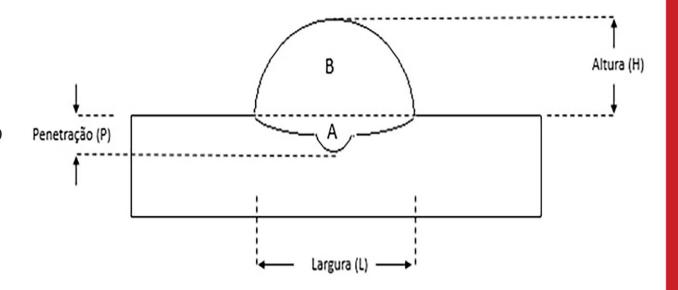
PROCESSO DE SOLDAGEM MIG/MAG



Terminologia básica de Soldagem

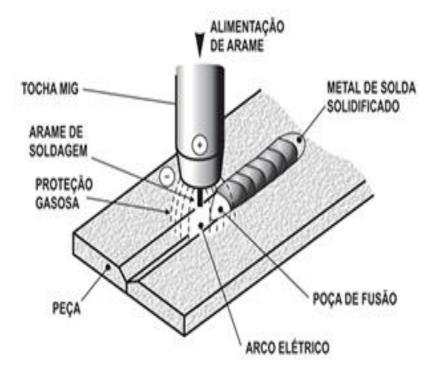
Termos básicos que são necessários para o entendimento do processo de soldagem

- Soldagem: é o processo de união de materiais;
- Metal Base: Material da peça que sofre o processo de soldagem;
- Metal de Adição: Material adicionado, no estado líquido, durante a soldagem;
- Poça de Fusão: região em fusão durante o processo;
- Penetração: distância da superfície original do metal de base ao ponto em que termina a fusão, medida perpendicularmente à mesma;
- Junta: Região entre peças que serão ou foram unidas.


Escola Estadual de Educação Profissional - Eeep (2020)

Terminologia - Diluição

- Na soldagem por fusão chama-se diluição a parcela de metal de base que entra na composição da zona fundida;
- Dependendo do procedimento utilizado tipo de junta, temperatura de pré-aquecimento, consumíveis, parâmetros elétricos – podem existir grandes variações no valor da diluição.


Baumgaertner Filho e Gonzalez (2017)

O que é o processo MIG/MAG

- Processo de soldagem por fusão;
- Processo flexível, de boa qualidade e excelente produtividade;
- Consiste em estabelecer um arco elétrico entre a peça e um consumível (arame), que ao entrarem em contato, fecham um circuito e inicia-se a passagem de corrente entre os polos positivo e negativo;
- Os metais se aquecem até o seu ponto de fusão e o resultado é a poça de fusão, gerada pela junção do metal de base com o metal de adição;
- Uma fonte externa de gás é utilizada para proteger a poça de fusão contra qualquer tipo de contaminação externa tanto do arco quanto da poça.

ESAB,2020

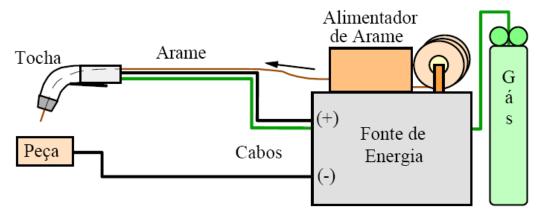
MIG x MAG - Entenda a diferença

MIG: Metal Inert Gas

- Utiliza-se um gás ou a mistura de gases inertes, ou seja, gases sem nenhuma atividade física com a poça de fusão, como o argônio e o hélio, por exemplo;
- A solda MIG é indicada para soldagem de materiais não ferrosos tais como alumínio, cobre, bronze, entre outros.

MAG: Metal Active Gas

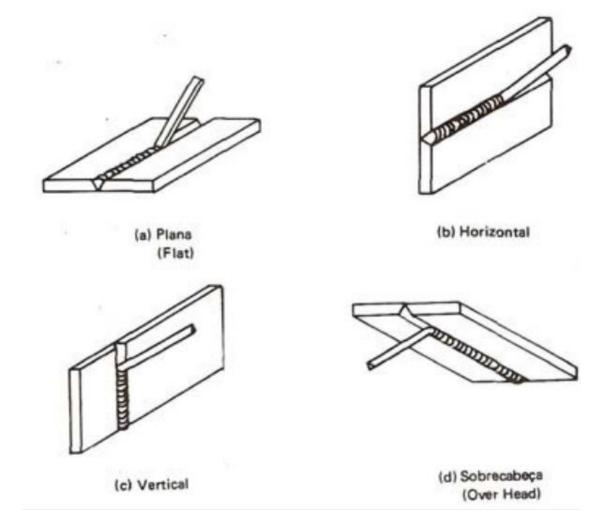
- Utiliza-se um gás ativo(Oxigênio, Dióxido de Carbono) ou a mistura de um gás ativo com inerte
- É denominado MAG quando um gás interage com a poça de fusão;
- É um processo indicado para a soldagem de materiais ferrosos.



Equipamentos

Basicamente um "sistema de soldagem MIG/MAG" é composto por:

- Fonte de energia;
- Alimentador de arame;
- Tocha de soldagem e acessórios;
- Cilindro de gás de proteção (ou rede de gás).



Anschau (2010)

Posições de Soldagem – MIG/MAG

Corrêa, Lemos e Leite (2008)

Fatores que influenciam na transferência do metal depositado para a poça de fusão

- Tipo de corrente;
- Tensão do arco elétrico;
- Intensidade (corrente/amperagem) ou velocidade do arame;
- Diâmetro do arame;
- Composição química do arame;
- Extensão do arame (stick-out);
- Composição do gás de proteção.

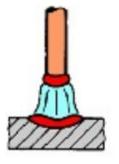
Santos (2020)

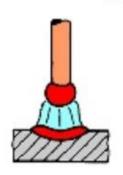
Modos de Transferência

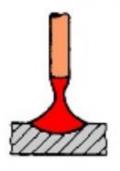
A combinação de fatores e parâmetros utilizados durante o processo, resultam no que é chamado de "Modos de Transferência", sendo eles:

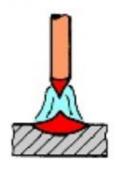
- Curto Circuito
- Globular
- Spray (aerossol)

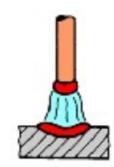
Slam International (2020)

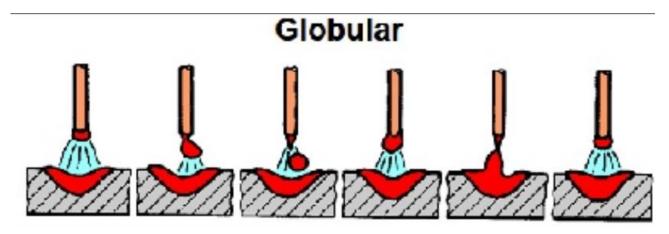





Modos de Transferência – Curto - Circuito


- Usada geralmente em chapas finas e fora da posição plana;
- A transferência do metal ocorre quando o arame entra em contato com a poça de fusão, provocando um aumento imediato de corrente e consequentemente, o "destacamento da gota".

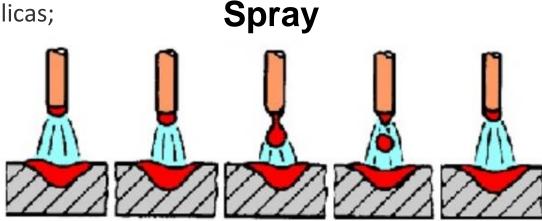

Curto Circuito


InfoSolda (2013)

Modos de Transferência – Globular

- Metal fundido com diâmetro maior que o metal de adição;
- Prejudicado por erros frequentes, como a formação de curto-circuito e respingos;
- Pouco utilizado pela instabilidade;

InfoSolda (2013)


Modos de Transferência – Spray

Ocorre em níveis elevados de corrente de soldagem;

Geralmente utilizado na posição plana ou horizontal para espessuras maiores que 5mm;

Transferência na forma de micro gotas metálicas;

Proporciona uma soldagem estabilizada.

Adaptado de InfoSolda (2013)

Influência da Polaridade no processo MIG/MAG

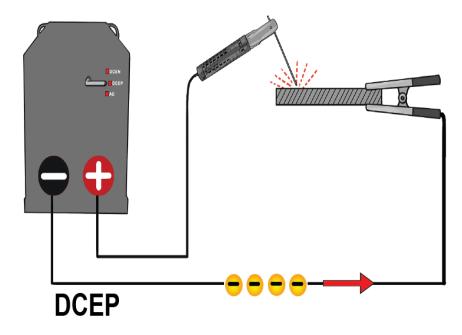
A polaridade usada no processo influencia nos seguintes fatores:

- Largura do cordão de solda;
- Altura do cordão;
- Penetração do metal de adição;
- Estabilidade do arco elétrico;
- Qualidade da transferência do metal de adição;
- Quantidade de salpicos;

Aço Especial (2020)

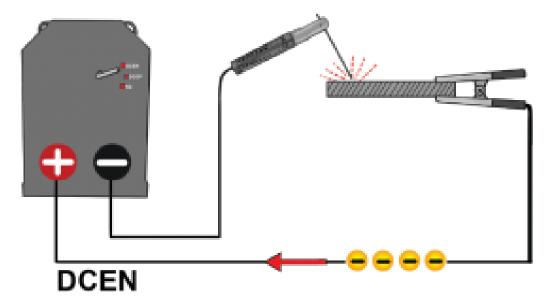
Tipos de Polaridade – MIG/MAG

Os três tipos de polaridade utilizados no processo de soldagem MIG/MAG são:


- Polaridade Positiva (DCEP)
- Polaridade Negativa (DCEN)
- Polaridade Variável (AC)

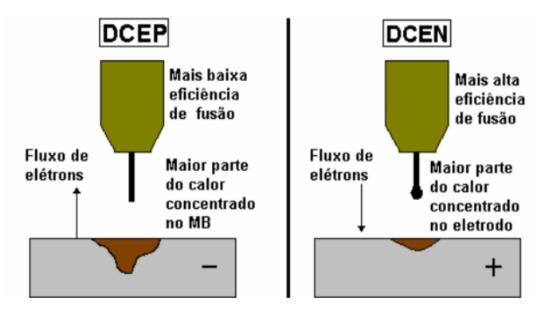
Polaridade Positiva - DCEP

- DCEP é uma sigla inglesa para Direct Current Electrode Positive (Corrente Direta com Eletrodo Positivo)
- Polaridade mais utilizada no MIG/MAG;
- Rende um arco estável, com transferência "lisa" do metal;
- Produz pouco salpico;
- Penetração profunda;
- Menor comprimento do cordão;
- Capacidade de soldar com diferentes modos de transferência;


American Welding Society (2020)

Polaridade Negativa - DCEN

- DCEN é uma sigla inglesa para Direct Current Electrode Negative (Corrente Direta com Eletrodo Negativo)
- Transferência irregular (instabilidade);
- Maior quantidade de salpicos
- Menor Penetração;
- Maior comprimento do cordão;
- Melhor desempenho em chapas galvanizadas.

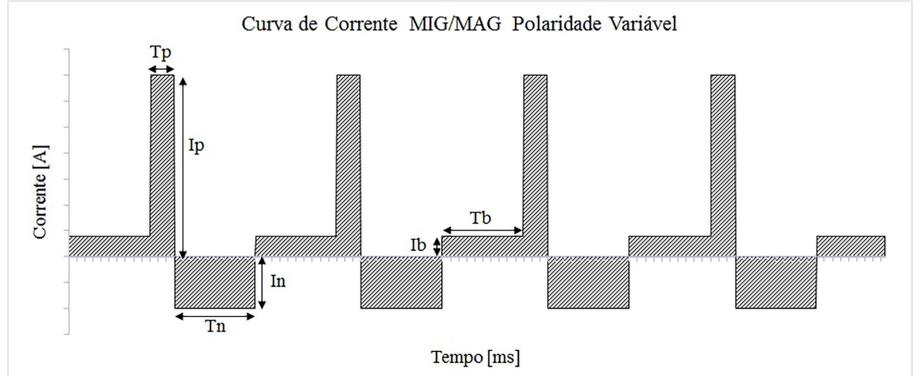

American Welding Society (2020)

Polaridade Variável - AC

- AC é uma sigla inglesa para Alternating Current (Corrente Alternada)
- Varia-se a polaridade entre positiva e negativa para obtenção de propriedades de ambos os polos no mesmo processo de soldagem;

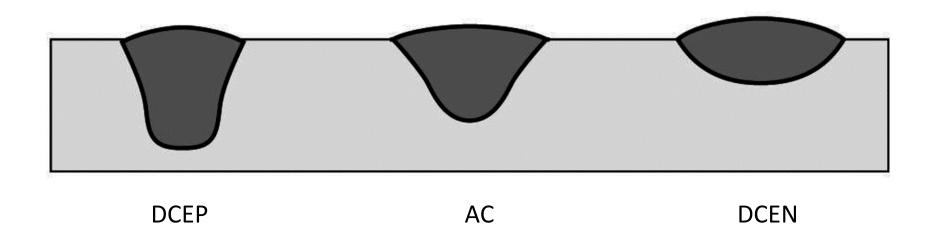
Nascimento (2006)

Polaridade Variável - AC


- A polaridade negativa possui alta taxa de fusão, aumentando a temperatura do eletrodo e minimizando os efeitos do calor no metal de base, reduzindo a deformação. Porém, com uma menor deformação, a penetração é menor também.
- Na polaridade positiva, a taxa de fusão é mais baixa, pois a temperatura da peça é maior que do eletrodo. Isso aumenta a deformação e, consequentemente, a penetração.
- Pode-se notar que são processos distintos, com **taxas de fusão** diferentes. Essa variação poderia causar uma grande **instabilidade** no processo, por isso, utiliza-se do eletrodo positivo, que traz consigo a estabilidade do arco elétrico.
- Combinando as polaridades, há troca de calor entre a peça e o eletrodo e controle da penetração, gerando baixas temperaturas no processo e aumento na **produtividade**.

Combinação das Polaridades

A combinação das polaridades é realizada através da utilização de pulsos positivos, corrente de base positiva e corrente de pulso negativa, por esta razão da nomenclatura polaridade variável, pois não há uma proporção homogênea entre as polaridades.


Baumgaertner Filho e Gonzalez (2017)

Comparação entre polaridades

Desenho comparativo entre a penetração, comprimento e altura de cordão obtidos nos processos de soldagem MIG/MAG - DCEP, DCEN e AC.

Layus(2016)

RIZEJA. **Corrosão Marinha - Você sabe como prevenir?** Disponível em: https://www.rijeza.com.br/blog/corrosao-marinha-como-prevenir. Acesso em: 03 maio 2020.

RIZEJA. **Desgaste por abrasão: como acontece e como resolver?** Disponível em: https://www.rijeza.com.br/blog/desgaste-por-abrasao-como-acontece-e-como-resolver. Acesso em: 03 maio 2020.

VICENTE, Antenor. **Mecanismos de desgaste dos metais**. Disponível em: https://mundomecanico.com.br/mecanismos-de-desgaste-dos-metais/. Acesso em: 04 maio 2020.

[4] RIZEJA. Como uma boa seleção de materiais pode aumentar a vida útil de peças em mais de 1000%? Disponível em: https://d335luupugsy2.cloudfront.net/cms%2Ffiles%2F10803%2F1464054096Ensaio+de+Abras%C3%A3o+Rijeza.pdf. Acesso em: 04 maio 2020.

HD TECNOLOGY. **A importância do aço em setores industriais**. 2018. Disponível em: http://www.hdtechnology.com.br/a-importancia-do-aco-em-setores-industriais/. Acesso em: 06 maio 2020.

BIO LUB (São Paulo). Como escolher o tipo certo de óleo lubrificante industrial para suas máquinas? 2018. Disponível em: https://biolub.com.br/blog/como-escolher-o-tipo-certo-de-oleo-lubrificante-industrial-para-suas-maquinas/. Acesso em: 04 maio 2020.

INDUSTRIAL, Mecânica. **Quando é necessário o tratamento térmico**. Disponível em: https://www.mecanicaindustrial.com.br/quando-e-necessario-o-tratamento-termico/. Acesso em: 04 maio 2020.

PINTEREST. **Usina Hidrelétrica**. Disponível em: https://br.pinterest.com/pin/236368680412603809/?d=t&mt=login. Acesso em: 04 maio 2020.

PINTEREST. **Rust Holes**. Disponível em: https://br.pinterest.com/pin/236368680412603809/?d=t&mt=login. Acesso em: 04 maio 2020.

BETAEQ. **OS TIPOS DE CORROSÃO**. 2018. Disponível em: https://betaeq.com.br/index.php/2018/11/27/os-tipos-de-corrosao/. Acesso em: 04 maio 2020.

ENGENHEIRO DE MATERIAIS. **As formas de corrosão**. 2017. Disponível em: http://engenheirodemateriais.com.br/2017/04/26/as-formas-de-corrosao/. Acesso em: 04 maio 2020.

PINTEREST. Ilustração Profissional Do Personagem Do Soldador Industrial. 2020. Disponível em: https://br.pinterest.com/pin/240801911313951444/. Acesso em: 11 maio 2020.

ESCOLA ESTADUAL DE EDUCAÇÃO PROFISSIONAL - EEEP (Ceará). **Processos de Soldagem**. Disponível em: https://www.seduc.ce.gov.br/wp-content/uploads/sites/37/2012/06/mecanica_processos_de_soldagem.pdf. Acesso em: 11 maio 2020.

ESAB (Minas Gerais). **Processo de Soldagem: MIG/MAG (GMAW)**. Disponível em: https://www.esab.com.br/br/pt/education/blog/processo_soldagem_mig_mag_gma w.cfm. Acesso em: 11 maio 2020.

ANSCHAU, Léo Diel. ANÁLISE DE FUMOS DE SOLDAGEM, SISTEMAS DE PROTEÇÃO E DESENVOLVIMENTO DE PROTÓTIPO PARA ESTUDO DA EMISSÃO DE FUMOS DE SOLDAGEM PARA PROCESSO MIG/MAG. 2010. Disponível em: file:///C:/Users/Grazi/Downloads/UNIJU%C3%8D%20Universidade%20Regional%20do%20Noroeste%20do%20Estado%20do%20Rio%20Grande%20do%20Sul%20DeTec%20Departamento%20de%20Tecnologia%20Curso%20de%20Engenharia%20Mec%C3%A2nica%20Campus%20Panambi.pdf. Acesso em: 11 maio 2020.

CORRêA, Marlon; LEMOS, Maurício Ferrapontoff; LEITE, Raphael. **Susceptibilidade a Corrosão Intergranular de Juntas Soldadas do Aço AISI 317L**. 2008. Disponível em: https://abraco.org.br/src/uploads/intercorr/2008/INTERCORR2008_166.pdf. Acesso em: 11 maio 2020.

SANTOS, Wesley David de Jesus. **Soldador mig mag e eletroldo**. Disponível em: https://www.trescliques.com.br/anuncio/soldador-mig-mag-e-eletroldo. Acesso em: 11 maio 2020.

SLAM INTERNATIONAL (Usa). **Lasers Cavitar**. Disponível em: https://www.slamintl.com/pt/cavitar-lasers-2. Acesso em: 11 maio 2020.

INFOSOLDA (Osasco). **Processo mig/mag – Modos de transferência**. 2013. Disponível em: https://infosolda.com.br/biblioteca-digital/livros-senai/processos/175-processomig-mag-modos-de-tranaferencias. Acesso em: 11 maio 2020.

AÇO ESPECIAL (São Paulo). **O que é aço 2738?** Disponível em: https://www.acoespecial.com.br/aco-2738.php. Acesso em: 04 maio 2020.

AMERICAN WELDING SOCIETY (USA). **DIRECT CURRENT ELECTRODE POSITIVE (DCEP)**. Disponível em: https://awo.aws.org/glossary/direct-current-electrode-positive-dcep/. Acesso em: 12 maio 2020.

AMERICAN WELDING SOCIETY (USA). **DIRECT CURRENT ELECTRODE NEGATIVE (DCEN)**. Disponível em: https://awo.aws.org/glossary/direct-current-electrode-negative/. Acesso em: 12 maio 2020.

NASCIMENTO, Alexandre Saldanha do. **UMA CONTRIBUIÇÃO AO ESTUDO DA SOLDAGEM MIG-CA**. 2006. Disponível em: https://docplayer.com.br/60998917-Uma-contribuicao-ao-estudo-da-soldagem-mig-ca.html. Acesso em: 12 maio 2020.

BAUMGAERTNER FILHO, Alexandre José; GONZALEZ, Arnaldo Ruben. **Estudo dos Parâmetros de Polaridade Negativa na Soldagem MIG/MAG Polaridade Variável para Revestimento**. 2017. Disponível em: https://www.scielo.br/scielo.php?pid=S0104-92242017000100046&script=sci_arttext. Acesso em: 12 maio 2020.

Layus, Pavel. (2016). Re: Why DCEN is preferred over DCEP for FCAW?. Retrieved from: https://www.researchgate.net/post/Why_DCEN_is_preferred_over_DCEP_for_FCAW/ 57f60c30ed99e1fb8455eb83/citation/download.

KOBE STEEL (Japão). **O ABC da soldadura por arco**. Disponível em: https://www.kobelco-welding.jp/portuguese/education-center/abc/ABC_2002-02.html. Acesso em: 12 maio 2020.

INSTITUTO PEDRO NUNES (Portugal). **Ensaios de Abrasão**. Disponível em: https://www.ipn.pt/laboratorio/LEDMAT/ensaio/10. Acesso em: 04 maio 2020.

RIJEZA (Rio Grande do Sul). **Desgaste por abrasão: como acontece e como resolver?** Disponível em: https://www.rijeza.com.br/blog/desgaste-por-abrasao-como-acontece-e-como-resolver. Acesso em: 04 maio 2020.

RIJEZA (Rio Grande do Sul). **Como uma boa seleção de materiais pode aumentar a vida útil de peças em mais de 1000%?** Disponível em: https://d335luupugsy2.cloudfront.net/cms%2Ffiles%2F10803%2F1464054096Ensaio+de+Abras%C3%A3o+Rijeza.pdf. Acesso em: 04 maio 2020.

VICENTE, Antenor. **Mecanismos de desgaste dos metais**. 2017. Disponível em: https://mundomecanico.com.br/mecanismos-de-desgaste-dos-metais/. Acesso em: 04 maio 2020.

INFOSOLDA. **Diluição**. 2013. Disponível em: https://infosolda.com.br/artigos/metalurgia/232-diluicao. Acesso em: 12 maio 2020.

NOGARE, Eric. A troca de óleo e o meio ambiente. 2018. Disponível em: https://splubi.com.br/troca-de-oleo-e-o-meio-ambiente/. Acesso em: 04 maio 2020.

EDWARDOLIVE. Goniômetro movimento instrumento médico usado para medir a mobilidade das articulações, ligamentos de nd tendões dos pacientes. - Imagem em Alta Resolução... Disponível em: istockphoto.com/br/foto/goniômetro-movimento-instrumento-médico-usado-para-medir-a-mobilidade-das-gm1033145658-276689254. Acesso em: 04 maio 2020.

RIJEZA (Rio Grande do Sul). **Você sabe classificar um Mecanismo de Desgaste?** Disponível em: https://www.rijeza.com.br/blog/voce-sabe-classificar-um-mecanismo-de-desgaste. Acesso em: 04 maio 2020.

INFOSOLDA (Osasco). Revestimento por soldagem – Processos de soldagem para revestimento. Disponível em: https://infosolda.com.br/biblioteca-digital/livros-senai/processos/180-revestimento-por-soldagem-processos-de-soldagem-para-revestimento. Acesso em: 11 maio 2020.

TM SERVICE (São Paulo). **ENSAIOS DE CORROSÃO**. Disponível em: https://grupotmservice.com.br/servicos/ensaios-corrosao/. Acesso em: 06 maio 2020.

ENGENHEIRO DE MATERIAIS. **As formas de corrosão**. 2017. Disponível em: http://engenheirodemateriais.com.br/2017/04/26/as-formas-de-corrosao/. Acesso em: 04 maio 2020.

RIJEZA. **O que é desgaste por erosão? Como prevenir?** Disponível em: https://www.rijeza.com.br/blog/o-que-e-desgaste-por-erosao-como-prevenir. Acesso em: 04 maio 2020.

INSTITUTO PEDRO NUNES (Portugal). **Ensaio de Erosão**. Disponível em: https://www.ipn.pt/laboratorio/LEDMAT/ensaio/9. Acesso em: 04 maio 2020.

RIJEZA (Rio Grande do Sul). **Desgaste por corrosão: o que é e como prevenir?** Disponível em: https://www.rijeza.com.br/blog/desgaste-por-corrosao-o-que-e-e-como-prevenir. Acesso em: 04 maio 2020.

ESAB (Minas Gerais). **Processo de Soldagem: MIG/MAG (GMAW)**. Disponível em: https://www.esab.com.br/br/pt/education/blog/processo_soldagem_mig_mag_gma w.cfm. Acesso em: 11 maio 2020.

ANSCHAU, Léo Diel. ANÁLISE DE FUMOS DE SOLDAGEM, SISTEMAS DE PROTEÇÃO E DESENVOLVIMENTO DE PROTÓTIPO PARA ESTUDO DA EMISSÃO DE FUMOS DE SOLDAGEM PARA PROCESSO MIG/MAG. 2010. Disponível em: file:///C:/Users/Grazi/Downloads/UNIJU%C3%8D%20Universidade%20Regional%20do%20Noroeste%20do%20Estado%20do%20Rio%20Grande%20do%20Sul%20DeTec%20Departamento%20de%20Tecnologia%20Curso%20de%20Engenharia%20Mec%C3%A2nica%20Campus%20Panambi.pdf. Acesso em: 11 maio 2020.

INFOSOLDA (Osasco). **Processo mig/mag – Modos de transferência**. 2013. Disponível em: https://infosolda.com.br/biblioteca-digital/livros-senai/processos/175-processo-mig-mag-modos-de-tranaferencias. Acesso em: 11 maio 2020.

CÉSAR, Paulo. **Processo de Solda MIG MAG**. 2018. Disponível em: https://alusolda.com.br/processo-de-solda-mig-mag/. Acesso em: 11 maio 2020.

ALUMAQ (Campinas). **O que é Solda MIG/MAG?** 2018. Disponível em: https://www.alumaq.com.br/o-que-e-solda-mig-mag/. Acesso em: 11 maio 2020.

APPROBATO, Beatriz. **Entenda o sistema, vantagens e aplicações do processo MIG/MAG!**2019. Disponível em: https://apaixonadosporferramentas.com.br/processo-mig-mag-sistema-vantagens-e-aplicacoes/. Acesso em: 11 maio 2020.

NASCIMENTO, Alexandre Saldanha do. **UMA CONTRIBUIÇÃO AO ESTUDO DA SOLDAGEM MIG-CA**. 2006. Disponível em: https://docplayer.com.br/60998917-Uma-contribuicao-ao-estudo-da-soldagem-mig-ca.html. Acesso em: 12 maio 2020.

BAUMGAERTNER FILHO, Alexandre José; GONZALEZ, Arnaldo Ruben. **Estudo dos Parâmetros de Polaridade Negativa na Soldagem MIG/MAG Polaridade Variável para Revestimento**. 2017. Disponível em: https://www.scielo.br/scielo.php?pid=S0104-92242017000100046&script=sci_arttext. Acesso em: 12 maio 2020.

Layus, Pavel. (2016). Re: Why DCEN is preferred over DCEP for FCAW?. Retrieved from: https://www.researchgate.net/post/Why_DCEN_is_preferred_over_DCEP_for_FCAW/ 57f60c30ed99e1fb8455eb83/citation/download.

SOUZA, Daniel; RESENDE, André Alves de; SCOTTI, Américo. **Um modelo qualitativo para explicar a influência da polaridade na taxa de fusão no processo MIG/MAG**. 2009. Disponível em: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-92242009000300002&Ing=en&nrm=iso. Acesso em: 12 maio 2020.

BAUMGAERTNER FILHO, Alexandre José; GONZALEZ, Arnaldo Ruben. **Estudo dos Parâmetros de Polaridade Negativa na Soldagem MIG/MAG Polaridade Variável para Revestimento**. 2017. Disponível em: https://www.scielo.br/scielo.php?pid=S0104-92242017000100046&script=sci arttext. Acesso em: 12 maio 2020.

